Imagen de Google Jackets

Proteins Membrane Binding and Pore Formation [electronic resource] / edited by Gregor Anderluh, Jeremy Lakey.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Advances in Experimental Medicine and Biology ; 677 | Advances in Experimental Medicine and Biology ; 677Editor: New York, NY : Springer New York, 2010Descripción: XIX, 172 p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9781441963277
Trabajos contenidos:
  • SpringerLink (Online service)
Tema(s): Formatos físicos adicionales: Sin títuloClasificación CDD:
  • 610 23
Clasificación LoC:
  • R-RZ
Recursos en línea:
Contenidos:
Springer eBooksResumen: Formation of transmembrane pores is a very effective way of killing cells. It is thus not surprising that many bacterial and eukaryotic toxic agents are pore-forming proteins. Pore formation in a target membrane is a complex process composed of several steps; proteins need to attach to the lipid membrane, possibly aggregate in the plane of the membrane and finally form a pore by inserting part of the polypeptide chain across the lipid bilayer. Structural information about toxins at each stage is indispensible for the biochemical and molecular biological studies that aim to - derstand how pores are formed at the molecular level. There are currently only two Staphylococcus aureus and hemolysin E from Escherichia coli. Therefore, what we know about these proteins was obtained over many years of intense experimentation. We have nevertheless, in the last couple of years, witnessed a significant rise in structural information on the soluble forms of pore-forming proteins. Surprisingly, many unexpected similarities with other proteins were noted, despite extremely low or insignificant sequence similarity. It appears that lipid membrane binding and formation of transmembrane channels is achieved in many cases by a limited repertoire of structures. This book describes how several of the important pore forming toxin families achieve membrane bi- ing and which structural elements are used for formation of transmembrane pores. Our contributors have thus provided the means for a comparative analysis of several unrelated families.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Energetics of Peptide and Protein Binding to Lipid Membranes -- Membrane Association and Pore Formation by Alpha-Helical Peptides -- Role of Membrane Lipids for the Activity of Pore Forming Peptides and Proteins -- Cholesterol-Dependent Cytolysins -- Laetiporus sulphureus Lectin and Aerolysin Protein Family -- Interfacial Interactions of Pore-Forming Colicins -- Permeabilization of the Outer Mitochondrial Membrane by Bcl-2 Proteins -- Molecular Mechanism of Sphingomyelin-Specific Membrane Binding and Pore Formation by Actinoporins -- Hemolysin E (HlyE, ClyA, SheA) and Related Toxins -- Pore formation by Cry toxins -- Role of Heparan Sulfates and Glycosphingolipids in the Pore Formation of Basic Polypeptides of Cobra Cardiotoxin -- Amyloid Peptide Pores and the Beta Sheet Conformation.

Formation of transmembrane pores is a very effective way of killing cells. It is thus not surprising that many bacterial and eukaryotic toxic agents are pore-forming proteins. Pore formation in a target membrane is a complex process composed of several steps; proteins need to attach to the lipid membrane, possibly aggregate in the plane of the membrane and finally form a pore by inserting part of the polypeptide chain across the lipid bilayer. Structural information about toxins at each stage is indispensible for the biochemical and molecular biological studies that aim to - derstand how pores are formed at the molecular level. There are currently only two Staphylococcus aureus and hemolysin E from Escherichia coli. Therefore, what we know about these proteins was obtained over many years of intense experimentation. We have nevertheless, in the last couple of years, witnessed a significant rise in structural information on the soluble forms of pore-forming proteins. Surprisingly, many unexpected similarities with other proteins were noted, despite extremely low or insignificant sequence similarity. It appears that lipid membrane binding and formation of transmembrane channels is achieved in many cases by a limited repertoire of structures. This book describes how several of the important pore forming toxin families achieve membrane bi- ing and which structural elements are used for formation of transmembrane pores. Our contributors have thus provided the means for a comparative analysis of several unrelated families.

ZDB-2-SBL

No hay comentarios en este titulo.

para colocar un comentario.