Imagen de Google Jackets

Multi-Layer Potentials and Boundary Problems [electronic resource] : for Higher-Order Elliptic Systems in Lipschitz Domains / by Irina Mitrea, Marius Mitrea.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Mathematics ; 2063 | Lecture Notes in Mathematics ; 2063Editor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Descripción: X, 424 p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9783642326660
Trabajos contenidos:
  • SpringerLink (Online service)
Tema(s): Formatos físicos adicionales: Sin títuloClasificación CDD:
  • 515.96 23
Clasificación LoC:
  • QA404.7-405
Recursos en línea:
Contenidos:
Springer eBooksResumen: Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Caldern, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in WhitneyLebesque spaces, WhitneyBesov spaces, WhitneySobolev- based Lebesgue spaces, WhitneyTriebelLizorkin spaces,WhitneySobolev-based Hardy spaces, WhitneyBMO and WhitneyVMO spaces.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

1 Introduction -- 2 Smoothness scales and Calden-Zygmund theory in the scalar-valued case -- 3 Function spaces of Whitney arrays -- 4 The double multi-layer potential operator -- 5 The single multi-layer potential operator -- 6 Functional analytic properties of multi-layer potentials and boundary value problems.

Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Caldern, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in WhitneyLebesque spaces, WhitneyBesov spaces, WhitneySobolev- based Lebesgue spaces, WhitneyTriebelLizorkin spaces,WhitneySobolev-based Hardy spaces, WhitneyBMO and WhitneyVMO spaces.

ZDB-2-SMA

ZDB-2-LNM

No hay comentarios en este titulo.

para colocar un comentario.