Imagen de Google Jackets

Nonlinear Optics in the Filamentation Regime [electronic resource] / by Carsten BrȨe.

Por: Tipo de material: TextoTextoSeries Springer Theses, Recognizing Outstanding Ph.D. Research | Springer Theses, Recognizing Outstanding Ph.D. ResearchEditor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012Descripción: XVI, 128 p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9783642309304
Trabajos contenidos:
  • SpringerLink (Online service)
Tema(s): Formatos físicos adicionales: Sin títuloClasificación CDD:
  • 621.36 23
Clasificación LoC:
  • TA1671-1707
  • TA1501-1820
Recursos en línea:
Contenidos:
Springer eBooksResumen: This thesis provides deep insights into currently controversial questions in laser filamentation, a highly complex phenomenon involving nonlinear optical effects and plasma physics. First, based on the concrete picture of a femtosecond laser beam which self-pinches its radial intensity distribution, the thesis delivers a novel explanation for the remarkable and previously unexplained phenomenon of pulse self-compression in filaments. Moreover, the work addresses the impact of a non-adiabatic change of both nonlinearity and dispersion on such an intense femtosecond pulse transiting from a gaseous dielectric material to a solid one. Finally, and probably most importantly, the author presents a simple and highly practical theoretical approach for quantitatively estimating the influence of higher-order nonlinear optical effects in optics. These results shed new light on recent experimental observations, which are still hotly debated and may completely change our understanding of filamentation, causing a paradigm change concerning the role of higher-order nonlinearities in optics.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Theoretical Foundations of Femtosecond Filamentation -- Pulse Self-Compression in Femtosecond Filaments -- Saturation and Inversion of the All-Optical Kerr Effect.

This thesis provides deep insights into currently controversial questions in laser filamentation, a highly complex phenomenon involving nonlinear optical effects and plasma physics. First, based on the concrete picture of a femtosecond laser beam which self-pinches its radial intensity distribution, the thesis delivers a novel explanation for the remarkable and previously unexplained phenomenon of pulse self-compression in filaments. Moreover, the work addresses the impact of a non-adiabatic change of both nonlinearity and dispersion on such an intense femtosecond pulse transiting from a gaseous dielectric material to a solid one. Finally, and probably most importantly, the author presents a simple and highly practical theoretical approach for quantitatively estimating the influence of higher-order nonlinear optical effects in optics. These results shed new light on recent experimental observations, which are still hotly debated and may completely change our understanding of filamentation, causing a paradigm change concerning the role of higher-order nonlinearities in optics.

ZDB-2-PHA

No hay comentarios en este titulo.

para colocar un comentario.