Imagen de Google Jackets

Unconventional Programming Paradigms [electronic resource] : International Workshop UPP 2004, Le Mont Saint Michel, France, September 15-17, 2004, Revised Selected and Invited Papers / edited by Jean-Pierre Bantre, Pascal Fradet, Jean-Louis Giavitto, Olivier Michel.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Computer Science ; 3566 | Lecture Notes in Computer Science ; 3566Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: XI, 367 p. Also available online. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9783540314820
Trabajos contenidos:
  • SpringerLink (Online service)
Tema(s): Formatos físicos adicionales: Sin títuloClasificación CDD:
  • 004.0151 23
Clasificación LoC:
  • QA75.5-76.95
Recursos en línea:
Contenidos:
Springer eBooksResumen: Nowadays, developers have to face the proliferation of hardware and software environments, the increasing demands of the users, the growing number of p- grams and the sharing of information, competences and services thanks to the generalization ofdatabasesandcommunication networks. Aprogramisnomore a monolithic entity conceived, produced and ?nalized before being used. A p- gram is now seen as an open and adaptive frame, which, for example, can - namically incorporate services not foreseen by the initial designer. These new needs call for new control structures and program interactions. Unconventionalapproachestoprogramminghavelongbeendevelopedinv- iousnichesandconstituteareservoirofalternativewaystofacetheprogramming languages crisis. New models of programming (e. g. , bio-inspired computing, - ti?cialchemistry,amorphouscomputing,. . . )arealsocurrentlyexperiencinga renewed period of growth as they face speci?c needs and new application - mains. These approaches provide new abstractions and notations or develop new ways of interacting with programs. They are implemented by embedding new sophisticated data structures in a classical programming model (API), by extending an existing language with new constructs (to handle concurrency, - ceptions, open environments, . . . ), by conceiving new software life cycles and program executions (aspect weaving, run-time compilation) or by relying on an entire new paradigm to specify a computation. They are inspired by theoretical considerations (e. g. , topological, algebraic or logical foundations), driven by the domain at hand (domain-speci?c languages like PostScript, musical notation, animation, signal processing, etc. ) or by metaphors taken from various areas (quantum computing, computing with molecules, information processing in - ological tissues, problem solving from nature, ethological and social modeling).
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Invited Talk -- From Quantum Physics to Programming Languages: A Process Algebraic Approach -- Chemical Computing -- Chemical Computing -- Programming Reaction-Diffusion Processors -- From Prescriptive Programming of Solid-State Devices to Orchestrated Self-organisation of Informed Matter -- Relational Growth Grammars A Graph Rewriting Approach to Dynamical Systems with a Dynamical Structure -- A New Programming Paradigm Inspired by Artificial Chemistries -- Higher-Order Chemical Programming Style -- Amorphous Computing -- to Amorphous Computing -- Abstractions for Directing Self-organising Patterns -- Programming an Amorphous Computational Medium -- Computations in Space and Space in Computations -- Bio-inspired Computing -- Bio-inspired Computing Paradigms (Natural Computing) -- Inverse Design of Cellular Automata by Genetic Algorithms: An Unconventional Programming Paradigm -- Design, Simulation, and Experimental Demonstration of Self-assembled DNA Nanostructures and Motors -- Membrane Systems: A Quick Introduction -- Cellular Meta-programming over Membranes -- Modelling Dynamically Organised Colonies of Bio-entities -- P Systems: Some Recent Results and Research Problems -- Outlining an Unconventional, Adaptive, and Particle-Based Reconfigurable Computer Architecture -- Autonomic Computing -- Autonomic Computing: An Overview -- Enabling Autonomic Grid Applications: Dynamic Composition, Coordination and Interaction -- Grassroots Approach to Self-management in Large-Scale Distributed Systems -- Autonomic Runtime System for Large Scale Parallel and Distributed Applications -- Generative Programming -- Towards Generative Programming -- Overview of Generative Software Development -- A Comparison of Program Generation with Aspect-Oriented Programming -- Generative Programming from a Post Object-Oriented Programming Viewpoint.

Nowadays, developers have to face the proliferation of hardware and software environments, the increasing demands of the users, the growing number of p- grams and the sharing of information, competences and services thanks to the generalization ofdatabasesandcommunication networks. Aprogramisnomore a monolithic entity conceived, produced and ?nalized before being used. A p- gram is now seen as an open and adaptive frame, which, for example, can - namically incorporate services not foreseen by the initial designer. These new needs call for new control structures and program interactions. Unconventionalapproachestoprogramminghavelongbeendevelopedinv- iousnichesandconstituteareservoirofalternativewaystofacetheprogramming languages crisis. New models of programming (e. g. , bio-inspired computing, - ti?cialchemistry,amorphouscomputing,. . . )arealsocurrentlyexperiencinga renewed period of growth as they face speci?c needs and new application - mains. These approaches provide new abstractions and notations or develop new ways of interacting with programs. They are implemented by embedding new sophisticated data structures in a classical programming model (API), by extending an existing language with new constructs (to handle concurrency, - ceptions, open environments, . . . ), by conceiving new software life cycles and program executions (aspect weaving, run-time compilation) or by relying on an entire new paradigm to specify a computation. They are inspired by theoretical considerations (e. g. , topological, algebraic or logical foundations), driven by the domain at hand (domain-speci?c languages like PostScript, musical notation, animation, signal processing, etc. ) or by metaphors taken from various areas (quantum computing, computing with molecules, information processing in - ological tissues, problem solving from nature, ethological and social modeling).

ZDB-2-SCS

ZDB-2-LNC

No hay comentarios en este titulo.

para colocar un comentario.