Imagen de Google Jackets

Incremental Learning for Motion Prediction of Pedestrians and Vehicles [electronic resource] / by Alejandro Dizan Vasquez Govea.

Por: Tipo de material: TextoTextoSeries Springer Tracts in Advanced Robotics ; 64 | Springer Tracts in Advanced Robotics ; 64Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010Descripción: 160p. 35 illus. in color. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9783642136429
Trabajos contenidos:
  • SpringerLink (Online service)
Tema(s): Formatos físicos adicionales: Sin títuloClasificación CDD:
  • 629.892 23
Clasificación LoC:
  • TJ210.2-211.495
  • T59.5
Recursos en línea:
Contenidos:
Springer eBooksResumen: Modeling and predicting human and vehicle motion is an active research domain. Owing to the difficulty in modeling the various factors that determine motion (e.g. internal state, perception) this is often tackled by applying machine learning techniques to build a statistical model, using as input a collection of trajectories gathered through a sensor (e.g. camera, laser scanner), and then using that model to predict further motion. Unfortunately, most current techniques use offline learning algorithms, meaning that they are not able to learn new motion patterns once the learning stage has finished. This books presents a lifelong learning approach where motion patterns can be learned incrementally, and in parallel with prediction. The approach is based on a novel extension to hidden Markov models, and the main contribution presented in this book, called growing hidden Markov models, which gives us the ability to learn incrementally both the parameters and the structure of the model. The proposed approach has been extensively validated with synthetic and real trajectory data. In our experiments our approach consistently learned motion models that were more compact and accurate than those produced by two other state-of-the-art techniques, confirming the viability of lifelong learning approaches to build human behavior models.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

I: Background -- Probabilistic Models -- II: State of the Art -- Intentional Motion Prediction -- Hidden Markov Models -- III: Proposed Approach -- Growing Hidden Markov Models -- Learning and Predicting Motion with GHMMs -- IV: Experiments -- Experimental Data -- Experimental Results -- V: Conclusion -- Conclusions and Future Work.

Modeling and predicting human and vehicle motion is an active research domain. Owing to the difficulty in modeling the various factors that determine motion (e.g. internal state, perception) this is often tackled by applying machine learning techniques to build a statistical model, using as input a collection of trajectories gathered through a sensor (e.g. camera, laser scanner), and then using that model to predict further motion. Unfortunately, most current techniques use offline learning algorithms, meaning that they are not able to learn new motion patterns once the learning stage has finished. This books presents a lifelong learning approach where motion patterns can be learned incrementally, and in parallel with prediction. The approach is based on a novel extension to hidden Markov models, and the main contribution presented in this book, called growing hidden Markov models, which gives us the ability to learn incrementally both the parameters and the structure of the model. The proposed approach has been extensively validated with synthetic and real trajectory data. In our experiments our approach consistently learned motion models that were more compact and accurate than those produced by two other state-of-the-art techniques, confirming the viability of lifelong learning approaches to build human behavior models.

ZDB-2-ENG

No hay comentarios en este titulo.

para colocar un comentario.