Imagen de Google Jackets

How Free Cationic Polymer Chains Promote Gene Transfection [electronic resource] / by Yue Yanan.

Por: Tipo de material: TextoTextoSeries Springer Theses, Recognizing Outstanding Ph.D. Research | Springer Theses, Recognizing Outstanding Ph.D. ResearchEditor: Heidelberg : Springer International Publishing : Imprint: Springer, 2013Descripción: XVIII, 94 p. 45 illus., 38 illus. in color. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9783319003368
Trabajos contenidos:
  • SpringerLink (Online service)
Tema(s): Formatos físicos adicionales: Sin títuloClasificación CDD:
  • 541.2254 23
Clasificación LoC:
  • QD380-388
Recursos en línea:
Contenidos:
Springer eBooksResumen: In this PhD thesis, Yue Yanan addresses a long-overlooked and critical question in the development of non-viral vectors for gene delivery. The author determines that those uncomplexed and cationic polymer chains free in the solution mixture of polymer and DNA facilitate and promote gene transfection. Furthermore, by using a combination of synthetic chemistry, polymer physics and molecular biology, Yue confirms that it is those cationic polymer chains free in the solution mixture, rather than those bound to DNA chains, that play a decisive role in intracellular trafficking. Instead of the previously proposed and widely accepted ǣproton spongeǥ model, the author's group propose a new hypothesis based on the results of several well-designed and decisive experiments. These results show that free polycationic chains with a length of more than ~10 nm are able to partially block the fusion between different endocytic vesicles, including the endocytic-vesicle-to-endolysosome pathway. This thesis is highly original and its results greatly deepen our understanding of polymer-mediated gene transfection. More importantly, it provides new insights into the rational design of next-generation superior polymeric gene-delivery vectors.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Introduction and background -- Revisiting complexation between DNA and polyethylenimine: the effect of uncomplexed chains free in the solution mixture on gene transfection -- Revisiting complexation between DNA and polyethylenimine: the effect of length of free polycationic chains on gene transfection -- Quantitative comparison of endocytosis and intracellular trafficking of DNA/polymer complexes in the absence/presence of free polycationic chains.

In this PhD thesis, Yue Yanan addresses a long-overlooked and critical question in the development of non-viral vectors for gene delivery. The author determines that those uncomplexed and cationic polymer chains free in the solution mixture of polymer and DNA facilitate and promote gene transfection. Furthermore, by using a combination of synthetic chemistry, polymer physics and molecular biology, Yue confirms that it is those cationic polymer chains free in the solution mixture, rather than those bound to DNA chains, that play a decisive role in intracellular trafficking. Instead of the previously proposed and widely accepted ǣproton spongeǥ model, the author's group propose a new hypothesis based on the results of several well-designed and decisive experiments. These results show that free polycationic chains with a length of more than ~10 nm are able to partially block the fusion between different endocytic vesicles, including the endocytic-vesicle-to-endolysosome pathway. This thesis is highly original and its results greatly deepen our understanding of polymer-mediated gene transfection. More importantly, it provides new insights into the rational design of next-generation superior polymeric gene-delivery vectors.

ZDB-2-CMS

No hay comentarios en este titulo.

para colocar un comentario.